skip to main content

Water Resources Engineering and Science

The Water Resources Engineering and Science area of study prepares students for the planning, design, operation, and management of surface and ground water systems, preservation and enhancement of the natural river and watershed environment, design and construction of water control facilities, and conservation of water resources.

Degrees Offered

Learn More About the Water Resources Engineering and Science Program

Students in Water Resources Engineering and Science (WRES) benefit from a world-class faculty with diverse areas of expertise in the field of water resources science and engineering. Through cooperation with various departments, programs and researchers throughout the University, the WRES program offers students a comprehensive, multidisciplinary education, preparing them to address the complex water resources problems that will await them in their future careers.  

The WRES program offers outstanding facilities for computational, laboratory and field study. The 11,000-square-foot Ven Te Chow Hydrosystems Laboratory features state-of-the-art facilities for research on environmental fluid mechanics & riverine, coastal estuarine morphodynamics. A unique course in field methods is offered in the summer academic session. WRES faculty lead the Critical Zone Observatory on Intensively Managed Landscapes (IML-CZO), one of the network of observatories funded by the National Science Foundation to investigate the coupled hydrology, ecology, geomorphology, and biogeochemistry of the near surface environments. 

Students have the opportunity to engage in several major research programs of WRES faculty. The Critical Zone Observatory on Intensively Managed Landscapes (IML-CZO) conducts integrated field and modeling studies on processes in the Upper Sangamon River Basin in Illinois and Clear Creek in Iowa. Another noteworthy research focus of the WRES area is the Chicago area’s Tunnel and Reservoir Plan (TARP), an ambitious public works project to control flooding and pollution in Lake Michigan and the Chicago River from sewer overflow. Illinois researchers are conducting ongoing research to optimize the operation of TARP and reduce flooding in the Chicago River, offering students opportunities for exposure to current, relevant research with significant human and environmental impact. WRES researchers are also playing a key role in the Center for Geologic Storage of Carbon Dioxide, investigating the transport and fate of multiple fluids in the deep subsurface to ensure the safe long-term sequestration of CO2 captured from coal-fired power plants.

Other research and teaching interests of WRES faculty include:

  • Systems for freshwater supplies for urban, industrial, and agricultural use
  • Flood control and water hazard mitigation
  • Conventional and ‘green’ infrastructure for stormwater drainage of cities, highways, airports, and catchments
  • Preservation, conservation, and utilization of surface water and wetlands
  • Stream ecology and ecohydraulics
  • Erosion and sediment control
  • Erosion, transport and fate of contaminated sediments
  • Groundwater utilization, management, and remediation
  • Vadose zone experimentation and modeling
  • Operation of reservoirs and lakes
  • Planning and management of the hydrologic environment in response to human impact and potential global climate changes
  • Complex systems involving interaction between water, climate, vegetation, soils and anthropogenic processes

Visit the Water Resources Engineering and Science website:

http://hydro.cee.illinois.edu/

Related Faculty

Professor
Professor Emeritus
Associate Professor
Professor
Assistant Professor
Professor
Research Assistant Professor
Associate Professor
Assistant Professor

Related News

Research Areas

Construction engineers manage and direct construction operations. They analyze the labor, materials, and equipment for each job to determine the proper quantity of each and ensure availability at the appropriate time and place.

Learn More

Civil engineers are often responsible for specifying, designing and manufacturing the materials with which they build their structures.  Studies in construction materials are intended to make structural, transportation and foundation engineers aware of the fundamental properties of the materials they use.

Learn More

Energy-Water-Environment Sustainability

Interdisciplinary program

The program in Energy-Water-Environment Sustainability (EWES) is a cross-cutting program focused on providing and supporting sustainable solutions for the exploration, production, delivery and use of energy, and their intersection with water and the natural and built environment. The program focuses on integrating scientific principles, engineered processes, and systems analyses to address diverse challenges related to society's growing energy needs and their nexus with water and the environment.

Learn More

Environmental engineers help solve problems of air, land and water contamination.  They design, construct and operate systems that purify water for drinking, industrial use and recreation.  They develop and implement air-purification devices and protocols for solid and hazardous waste management.

Learn More

Geotechnical engineers use soil, rock and geosynthetics as engineering materials.  They design earth- and rock-filled dams, tunnels, landfills and foundations for structures of all types.

Learn More

Interdisciplinary program

The Societal Risk Management (SRHM) program is a cross-disciplinary program that focuses on the development of a secure and safe society. The program concentrates on risk determination, risk evaluation and risk management for natural and human-made hazards, and disaster response and recovery.

Learn More

Structural engineers design economical structures that resist forces induced by wind, earthquakes, blasts and heavy traffic.  The tools of the structural engineer include physical testing, mathematical modeling and computer simulation.

Learn More

Interdisciplinary program

The interdisciplinary program Sustainable and Resilient Infrastructure Systems (SRIS) addresses emerging approaches to infrastructure systems focusing on resiliency and sustainability of inter-connected infrastructure, for example, structural, geotechnical, and water interactions in urban environments. The program aims to prepare new generations of civil engineers who are ready to address pressing societal issues while developing needed infrastructure. 

Learn More

Transportation engineers design, build, operate and maintain all types of facilities for railroads, automobiles, airplanes and ships.  They deal with such problems as moving millions of people in and out of cities at rush hour and moving carloads of wheat from the fields of Kansas to the port of New Orleans.

Learn More

Water resource engineers help solve complex water challenges, including providing society with safe and reliable water supplies, managing impacts of floods and drought, and enhancing environmental quality. They plan, design, manage and operate surface water and groundwater systems that are sustainable and adaptable to changing climate and human activity.

Learn More

*Interdisciplinary Programs